Amyloid Oligomer Conformation in a Group of Natively Folded Proteins
نویسندگان
چکیده
Recent in vitro and in vivo studies suggest that destabilized proteins with defective folding induce aggregation and toxicity in protein-misfolding diseases. One such unstable protein state is called amyloid oligomer, a precursor of fully aggregated forms of amyloid. Detection of various amyloid oligomers with A11, an anti-amyloid oligomer conformation-specific antibody, revealed that the amyloid oligomer represents a generic conformation and suggested that toxic beta-aggregation processes possess a common mechanism. By using A11 antibody as a probe in combination with mass spectrometric analysis, we identified GroEL in bacterial lysates as a protein that may potentially have an amyloid oligomer conformation. Surprisingly, A11 reacted not only with purified GroEL but also with several purified heat shock proteins, including human Hsp27, 40, 70, 90; yeast Hsp104; and bovine Hsc70. The native folds of A11-reactive proteins in purified samples were characterized by their anti-beta-aggregation activity in terms of both functionality and in contrast to the beta-aggregation promoting activity of misfolded pathogenic amyloid oligomers. The conformation-dependent binding of A11 with natively folded Hsp27 was supported by the concurrent loss of A11 reactivity and anti-beta-aggregation activity of heat-treated Hsp27 samples. Moreover, we observed consistent anti-beta-aggregation activity not only by chaperones containing an amyloid oligomer conformation but also by several A11-immunoreactive non-chaperone proteins. From these results, we suggest that the amyloid oligomer conformation is present in a group of natively folded proteins. The inhibitory effects of A11 antibody on both GroEL/ES-assisted luciferase refolding and Hsp70-mediated decelerated nucleation of Abeta aggregation suggested that the A11-binding sites on these chaperones might be functionally important. Finally, we employed a computational approach to uncover possible A11-binding sites on these targets. Since the beta-sheet edge was a common structural motif having the most similar physicochemical properties in the A11-reactive proteins we analyzed, we propose that the beta-sheet edge in some natively folded amyloid oligomers is designed positively to prevent beta aggregation.
منابع مشابه
Conformation dependent monoclonal antibodies distinguish different replicating strains or conformers of prefibrillar AÎ2 oligomers
Background: Age-related neurodegenerative diseases share a number of important pathological features, such as accumulation of misfolded proteins as amyloid oligomers and fibrils. Recent evidence suggests that soluble amyloid oligomers and not the insoluble amyloid fibrils may represent the primary pathological species of protein aggregates. Results: We have produced several monoclonal antibodie...
متن کاملPhase diagram of alpha-helical and beta-sheet forming peptides.
The intrinsic property of proteins to form structural motifs such as alpha helices and beta sheets leads to a complex phase behavior in which proteins can assemble into various types of aggregates including crystals, liquidlike phases of unfolded or natively folded proteins, and amyloid fibrils. Here we use a coarse-grained protein model that enables us to perform Monte Carlo simulations for de...
متن کاملDesigned α-sheet peptides inhibit amyloid formation by targeting toxic oligomers
Previous studies suggest that the toxic soluble-oligomeric form of different amyloid proteins share a common backbone conformation, but the amorphous nature of this oligomer prevents its structural characterization by experiment. Based on molecular dynamics simulations we proposed that toxic intermediates of different amyloid proteins adopt a common, nonstandard secondary structure, called α-sh...
متن کاملConformational constraints for amyloid fibrillation: the importance of being unfolded.
Recent reports give strong support to the idea that amyloid fibril formation and the subsequent development of protein deposition diseases originate from conformational changes in corresponding amyloidogenic proteins. In this review, recent findings are surveyed to illustrate that protein fibrillogenesis requires a partially folded conformation. This amyloidogenic conformation is relatively unf...
متن کاملSelective stabilization of natively folded RNA structure by DNA constraints.
Learning how native RNA conformations can be stabilized relative to unfolded states is an important objective, for both understanding natural RNAs and improving the design of artificial functional RNAs. Here we show that covalently attached double-stranded DNA constraints (ca. 14 base pairs in length) can significantly stabilize the native conformation of an RNA molecule. Using the P4-P6 domain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008